BIP39 Seed Phrase Obfuscation
(BSPO)

Michael Mezher (MCS)
Nabil Mezher (MCS)

Abstract

The ability to self-custody Bitcoin is arguably
one of its most important and distinguishing
features. However, participating in
self-custody of Bitcoin exposes asset holders to
a number of risks, namely the potential for
loss and theft. This paper introduces BSPO, a
simple method aimed at improving the
security of the BIP39 protocol. We discuss the
underlying cryptographic security of the
BIP39 protocol along with the real-world
vulnerabilities of storing seed phrases using
currently recommended methods. We
postulate that applying BSPO dramatically
improves the security of the underlying assets
tied to a seed phrase and support our claim
through rudimentary parametric statistical
analysis.

Introduction

BIP39 describes a widely used method of
generating a mnemonic code, frequently referred
to as a seed phrase (Palatinus et al., 2022). This
phrase can then be converted to a binary seed,
which is used in BIP32 to produce a Hierarchical
Deterministic Wallet (Wuille, 2022) in order to
enable the owner of the wallet reception of
Bitcoin (or other cryptocurrency — herein referred
to as Bitcoin) via derivative public addresses.
Although BIP39 is cryptographically secure, the
use of a seed phrase as the primary method of
storing Bitcoin introduces several real world
security vulnerabilities. BIP39 Seed Phrase
Obfuscation (BSPO) is a method aimed at
resolving these issues while remaining

interpretable and usable by cryptocurrency
holders without a technical background.

Cryptographic Security

BIP39 seed phrases are generated by a process
starting with generating a random binary seed B
of between 128-256 bits with a length N divisible
by 32. Next SHA256 is used to hash B, and the
first N/32 bits of this hash are used as a checksum
C. This checksum is then appended to the end of
B, whose summation we will call R. Finally, the
bits are segmented into groups of 11 bits
encoding an integer b € [1,2048]. This integer
is used as an index into the BIP39 word list of
length 2048.

Although the aforementioned checksum reduces
the number of valid seed phrases that can be
generated (the checksum typically being specific
to an underlying wallet protocol), since there is
no known way to identify the subset of valid seed
phrases a priori, an attacker looking to identify an
existing seed phrase via brute force would still
need to consider all potential seed phrase
permutations. This is obvious once one considers
that SHA256 remains cryptographically secure.

It is clear that BIP39 is a cryptographically secure
protocol. To illustrate this, consider the
following: If attempting to identify a seed phrase
of a specific existing wallet in a brute forcing
manner, without any additional information, it

would take A = (2048 FHIN/32)/1L) /o
attempts for a 50% probability of generating a


https://www.codecogs.com/eqnedit.php?latex=A%3D(2048%5E%7B(N%2B(N%2F32))%2F11%7D)%2F2#0

collision, defined as when a seed phrase
generated matches any previously generated seed
phrase. For N=128 bits (a 12-word seed phrase,
the least cryptographically secure),

A = 2.723 x 10%. For N=256 bits (a 24-word
seed phrase, the most secure)

A = 1.482 x 10™. For perspective, this is
roughly equal to the number of atoms in the
observable universe. This means that your wallet
is highly secure. Of course, an attacker is likely
more interested in generating a seed collision
with any wallet.

If 12 word seed phrase are generated at random,
in order for the probability of collision to exceed
50%, approximately 8.688%10' seed phrases
would have to be in use. This result, obtained
from equations 1, is based on the Generalized
Birthday Problem formulation referenced in
(Brink, 2012) Theorem 2. Note that this does not
take into account wallet specific checksums.

RO < n(d) —f2d * 2 < 9 — 86 * In2 (1)

Since the number of seed phrases likely ever to
be used is many orders of magnitude smaller than
this value, an unintentional or intentional
(birthday attack) collision highly improbable,
even when using the least cryptographically seed
phrase variation of length 12.

How improbable? Let us make the following
assumptions.

There are currently 8x10° 12 word seed phrases in
use, roughly one for each person on earth.

The only compute intensive operation an attacker
needs to perform to generate and test seed
phrases for collision is SHA-256. This
assumption is highly beneficial for the
hypothetical attacker.

The attacker is able to perform SHA-256 at a rate
of 100 TH/s (roughly the hashing capacity of the
AntMiner S19, the latest major model refresh

from BITMAIN, the leading producer of
SHA-256 ASIC hardware).

Seed phrases are uniformly distributed and the
attacker generates seeds in a deterministic and
sequential manner. This is beneficial over
randomly generating the seed phrases, as the
probability of collision in the former case would
be appropriately modeled by a hypergeometric
distribution whereas in the later case, it would be
modeled by a binomial distribution.

Under these conditions, it would take the attacker
just under 15 million years to achieve a 50%
probability of generating a single collision. This
follows from the hypergeometric distribution
PMF shown in equation 2 below.

s o) _ o lbs)
R 2)

n

k=1

Where K is the number of existing wallets, k
denotes the number of collisions, N is the size of
the possible seed phrase output space, and n is
the number of seed attempts made (ie the
hashrate multiplied by the duration of the attack
in seconds). The notation (Z) represents the

binomial coefficient of variables @ and b. For a
more intuitive rough order of magnitude estimate
of this collision probability, consider that if 12
word seed phrases are generated uniformly in
their possible output space, the size of each
partition created between 8 billion existing seed

phrases would be where N represents the

N _
(K+1)
size of the seed phrase output space and K
represents the number of existing wallets. This
value comes out to 6.81e+29 in the previously
mentioned scenario. Continuing our previous
assumption of a 100 TH/s ASIC, starting our
generation of seed phrases from one end of the

output space, it would take approximately

6.81e+29 _
Ter16* (sea007365) — - 16e + 7 yearsto

encounter the first existing seed phrase.



https://www.codecogs.com/eqnedit.php?latex=A%3D2.723%5Ctimes10%5E%7B39%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20A%20%3D1.482%20%5Ctimes%2010%5E%7B79%7D%20#0

Note that this assessment is aimed only at
assessing vulnerabilities to conventional
computers. Quantum based birthday attacks may
be feasible, particularly to the 12 word seed
phrase variation. However, such hardware is, as
of 2022, still theoretical.

BIP39 Vulnerabilities

Although the method of generating seed phrases
outlined in BIP39 is secure from a cryptographic
perspective, the resulting phrase can easily be
misplaced or stolen, resulting in a permanent loss
of Bitcoin. It’s estimated that over 1500 Bitcoin
are lost daily (Cane Island, 2020), in most cases
due to the mishandling of private keys. Naive
mitigation of these vulnerabilities through seed
phrase replication and/or distributed storage
results in additional threat exposure.

Consider the following primitive methods of
BIP39 seed phrase storage and their obvious
vulnerabilities.

Storage in a home safe.

o Clear target during theft.

Storage in a single hidden location.

o Increases the probability of lost seed phrase,
potential for unintentional discovery by third
parties.

Storage of seed phrase replicas in multiple

locations.

o Although the risk of phrase loss is decreased,
the risk of successful theft and/or
unintentional discovery is increased.

Storage of partial seed phrase segments in

multiple locations.

o Although the risk of theft by an actor of low
sophistication is decreased, a sophisticated
attacker may be able to use the partial
information to brute force the remaining seed
terms. Additionally, depending on how the
seed is distributed, risk of loss may also be
increased. Note that this method does not

refer to more intricate methods of distribution
such as Shamir’s Secret Sharing.

e Mental storage.

o Risk of forgetting.

e Digital storage.

o Seed phrases are highly susceptible to
crawling applications and should never be
stored digitally. In general, seed phrases
should never be entered in a digital format
unless the user is looking to recover their
funds.

There’s currently no easily implemented method
of seed phrase storage that mitigates accidental

loss and theft, arguably the two primary inherent
risks of self-custody. BSPO aims to provide this.

Existing Work

The creators of BIP39 make some clear attempts
at designing a user friendly protocol. First, rather
than using an integer between 0-2047, these
values are used to index a known list of
commonly used terms, which may be easier to
remember than a sequence of random integers.
Additionally, risk of misidentification is reduced
by the BIP39 requirement that the first 4
characters of each word be unique, regardless of
word length.

There also exists auxiliary development to the
BIP39 original implementation aimed at
improving its security. Notably, seed passphrases
are supported by several widely used hardware
wallets including Trezor, Ledger and Coldcard.
These passphrases are an additional set of
characters that must be used in conjunction with
the original seed to facilitate derivation of the
underlying deterministic hierarchical wallet
(Trezor, 2022). Though this work certainly
improves upon the security of the BIP39 seed
phrase, particularly with respect to physical theft
by an unsophisticated attacker, several
shortcomings exist. Since the passphrase can be



flexibly generated (in the Trezor
implementation), it is not guaranteed to be
cryptographically secure and is susceptible to
brute force or dictionary attacks. In another
scenario, if the user attempts to memorize the
passphrase, they may lose their funds due to
forgetting the phrase. This method does not
resolve any issues associated with losing a seed
phrase, unless the seed phrase is more freely
distributed to additional locations, in which case,
security may be compromised due to the
previously mentioned potential vulnerabilities to
the passphrase itself. Other methods of improving
the practical security of BIP39 exist (such as use
of Shamir’s Secret Sharing algorithm (Streit,
2021)), but tend to be difficult to interpret and
leverage by laypersons and generally require the
digital entry of seed phrases.

Proposed Solution

BSPO is implemented in a manner that’s both
easy to understand and to leverage. At a high
level, BSPO converts a user’s original seed
phrase to an encrypted seed phrase, which can be
reversed using a simple lookup table. The initial
conversion of the seed phrase into its encrypted
form is also done using a lookup table. This
enables a user to encrypt/decrypt their seed
phrase without ever having to digitally enter their
seed phrase or perform any sort of calculations.
In addition, the risks inherent to self-custody
(loss/theft) discussed earlier may both be
mitigated using BSPO.

Usage of BSPO is conducted as follows:

. Auser with a written seed phrase P navigates to
bipshuffle.com.

o Atable of 2048 x N+1 is created, where N
is the length of the user-determined seed
phrase. The first column contains an
alphabetically sorted version of the BIP39
term list. Each subsequent column contains

a shuffled version of the BIP39 term list
(shuffled in a cryptographically secure
manner — our implementation uses an
implementation of Fisher Yates with a
Linux OS CSPRNG as the source of
entropy). Call this table 7'/.

° A corresponding table 72 to 71 is
concurrently generated with dimensions
being 2048 x N+1. Its first column is an
alphabetically sorted version of the BIP39
term list. However, each subsequent column
contains the reverse mapping between the
alphabetically sorted first column and the
columns in 7'/. That is, if term a — b, in T1,
then in 72 b;— a, where a represents the
BIP39 term in the first column of 7'/ and b,
represents the BIP39 term in the ith column
of T1. “Mapping” in this context is always
considered to be matching a term in the first
(alphabetically sorted) column of a table to
a term in another index specified column.

2. Using a pen and paper, the user then maps their

original seed phrase to its encrypted form using
T1. To do this, they simply find each term ¢, for
xin [I,N]in T1., (where ¢ represents the term
at index x in P and T/ ., represents the first
column of 77) and find the corresponding term
T1; «+; (where T, ., represents the term in 7'/
at the k™ row and the x+ /™ column; the &™ row
being the row containing ¢, in 7. ;) — call this
corresponding term ¢/,. The user then writes
each encrypted term ¢/, in order on the sheet of
paper. Call this encrypted phrase P..

. Next, the user digitally saves or prints out table

12.

The user then verifies that they are able to
decrypt P, into P using table 72. The process for
this is identical to what is outlined in step 2
above, but P, is used in place of P and 72 is used
in place of 7'1.



5. Optional (suggested): The user then repeats the

entire process (at least once) such that they have
two encrypted keys and two decryption tables
(T2). The encrypted key and decryption table
should be marked such that the user knows that
they correspond to one another. This reasoning
for this (suggested) repetition is outlined in the
Approximation of Risk Reduction section of this

paper.

Once the user has followed the above steps and
confirmed the ability to successfully decrypt P,
into P using 72 (for all of their created pairs of P,
and 72), they can safely discard P.

Finally, it’s suggested that the user then stores
their encrypted seed phrase(s) and decryption
tables in separate, known locations.

The resulting pairs of P,and 72 contain all the
information required to reconstruct P, but neither
P,or T2 contain any information useful for
reconstructing P by themselves. To be more
specific, say that the user created n pairs of
encrypted seed phrases and decryption tables
denoted (P!, T2), (P2, T2°), ... (P.", T2"). Then
gaining access to any encrypted seed P," would
provide absolutely no information useful for
reconstructing P unless access to 72° was also
acquired. Similarly, gaining access to any
decryption table 72" would provide absolutely no
information useful for reconstructing P unless
access to P, was also acquired. This property not
only dramatically improves security by requiring
an attacker to locate two separate pieces of
information, it also enables relatively safe storage
of either 72" or P,’ in a digital format (due to the
size of T2, this is the piece of information we
recommend for digital storage). Additionally,
because BSPO can be repeated as many times as
desired, the potential for seed phrase loss is
dramatically reduced, despite two pieces of
information being required to reconstruct P.

Pragmatically, the end result is nearly identical to
applying Shamir’s Secret Sharing to the P with a
two share split and requiring both shares for
reconstruction of P. However, our method never
requires a user to digitally enter their seed phrase,
and requires no complex operations to be
conducted by the user. The method remains
scalable in the same manner as Shamir’s Secret
Sharing strategy, and P can be apportioned to up
to N-1 unique entities.

Although the process outlined above may seem
complex (in part, due to the notation used); in
practice, it’s a very straightforward practice to
carry out and is easily illustrated through a
guided user interface.

Approximation of Risk Reduction

Although, it’s impossible to concretely quantify
the risk reduction provided by BSPO, this section
aims to provide a practical parametric
approximation by making the assumption that
adverse events can be categorized as either loss
or theft and occur with some assumed probability
in an I[ID manner.

Let P, represent the probability that loss of a seed
phrase or decryption table occurs over some
finite duration D. Let P; represent the probability
that theft of a seed phrase or decryption table
occurs over the same duration D. Then the
probability that each seed phrase or decryption
table is not lost or stolen (ie safe) is Py=1-

(P +Pr).

Note that loss and theft are modeled separately,
because in the case of “loss”, losing either the
seed phrase or decryption table from a pair causes
loss of the underlying asset; whereas in the case
of theft, both the seed phrase and decryption table
must be compromised. In this approximation, it
can thus be said that cases of theft where the seed
phrase or decryption table is physically stolen
and lost to the user should be lumped in with P;.



Generalizing over an arbitrary number of BSPO
repetitions, for funds to be compromised due to
loss, one or more pieces of information from
every seed/decryption table pair must be lost; For
funds to be compromised due to theft, both pieces
of information from one seed/decryption table
pair must be stolen.

Consider this simplified model applied to several
scenarios as outlined below:

A seed phrase stored on a physical sheet of paper

without BSPO applied.

o In this scenario, the probability that the seed
phrase remains safe over some finite duration
is simply P.=1 - (PL + PT).

One round of BSPO is applied and the seed

phrase and decryption table are stored separately

(note that if stored together, the scenario

essentially reduces to scenario 1 above).

o In this scenario, the probability that the seed
phrase remains safe is

P5= 1 - (1 —PL) +PT.
o It can be said that in this scenario, the term

—2
1-P L) represents the probability that the

. 2
funds are compromised due to loss and PT

represents the probability that funds are
compromised due to theft.

Two rounds of BSPO are applied and all four

pieces of information are stored separately.

o In this scenario, the probability that the seed
phrase remains safe is

=2 2 2.2
P =1~ (¢! —PL) +(1-01 —PT) )
o Once again breaking apart this scenario, the
—2
term (1 — P L)2 represents the probability

that the funds are compromised due to loss
(two separate events where either a seed or
decryption table is lost from each created

pair must occur.) and 1 — (1 — Pi)2

represents the probability that the funds are
compromised due to theft (either of the
pairs of seed phrases and encryption tables
must be stolen).

This approach to modeling adverse events and
the corresponding probability that the funds
remain safe can be applied to any number of
BSPO rounds. The general formula for
calculating the probability that the funds remain
safe as a function of the number of BSPO rounds
is shown in equation 3 below.

=2 R 2.R
Po=1-(1-P)'+a-@a-p% @
The variable R represents the number of times
BSPO is leveraged. Figure 1 below illustrates the

approximation of a fund safety subject to
different hypothetical values of P, and P;.

BSPO Rounds Applied vs Funds Safety

I

= P L=01 P_T=01

PL=0.1 PT=002
W P —0.02 PT=0.1
B P =002 P T=002

1000

0.975

0.950

0925

0.900

0.875

0.850

Probability Funds Remain Safe

0.825

0.800

Baseline 1 2 3 4
ESPO Rounds Applied

Figure 1

BSPO Rounds Applied vs Probability of Lost Funds

0.200
0175
0150

0125
mm P =01 PT=01
PL=0.1 P T=0.2
= P =002 PT=01
W P=002 P_T=002

0100

0075

0050

0025

0000

Probability Funds are Compromised Due to Loss

Baseline 1 2 3 4 5 6
BSPO Rounds Applied

Figure 2



BSPO Rounds Applied vs Probability of Stolen Funds

010 =P -01 PT=01
PL=01 PT=0.02
0.08 . P =002 PT=01

. P -002 P T=0.02

0.06

0.04

002

Probability Funds are Compromised Due to Theft

Easeline 1 2 3 4 5 &
ESPO Rounds Applied

Figure 3

Notice that in all cases, fund safety dramatically
improves after 2 rounds of BSPO. Note that the
only instance where BSPO causes decreased
safety is when a single round is applied while
assuming P, < P,. This case emphasizes the
importance of applying BSPO at least twice.

As expected, for all cases, the probability of loss
occurring decreases relative to the number of
BSPO repetitions and the probability of theft
occurring increases (shown in Figures 2 and 3
respectively). However, since successful theft
requires access to two separate pieces of
information, the decreased loss probability more
than makes up for the increased probability of
theft.

Note that this approximation is only provided as a
thought experiment, and that real world
complexities make it nearly impossible to
accurately quantify fund safety except through
retrospective study. Still, this model demonstrates
the notion that BSPO (especially applied at least
twice) is likely to dramatically reduce the chance
of property loss.

Shortcomings

Although the BSPO method is secure and
attempts to minimize obstacles for users,
imperfections still exist. Firstly, the user must
still be able to accurately map terms using a
lookup table. We’ve tried to make our website

(bipshuftle.com) convenient to use for this
purpose by fixing row and column indices and
providing a scrollable table, but this only helps
with encrypting the seed phrase. During
decryption, the user must tediously use their
printed or digitally saved table to recover the
original phrase.

In the hopes of decreasing user error, we provide
a step-by-step user guide for encryption and
decryption of seed phrases using BSPO. The seed
phrases used in this step-by-step user guide are
randomly generated, such that the user can run
through the guide multiple times to gain an
intuition for BSPO.

One less obvious vulnerability is the potential for
bad actor’s collect information directly from a
user’s screen (assuming a user’s machine is
compromised). If the user is leveraging their
cursor as a tool to assist in seed phrase
encryption/decryption, it’s possible an attacker
could identify the seed phrase. To mitigate such
an attack, we’ve provided the ability to download
and print both the encryption and decryption
tables, providing the ability to conduct BSPO in a
completely offline setting.



Addendum

The analysis above is directly applicable to the
“full” version of BSPO. Since the origination of
this document, a “lite” version of BSPO has been
added to the bipshuffle.com website. BSPO Lite
was added in the interest of usability. The
primary tradeoff is improved simplicity and
convenience for a decrease in cryptographic
security.

BSPO Lite and BSPO Full differ in the number
of shuffles used to generate the final, secured
cipher seed. BSPO Full provides a new term
selected from a uniquely shuffled enumeration
for every index of the seed phrase, whereas
BSPO Lite only produces a single shuffled
enumeration. This means that in the event there
exists a repeat term in the original seed, with
respect to BSPO Full, the probability the same
term indices in the encrypted seed will also be
repeat terms is 1/2048; whereas in BSPO Lite,
the newly encrypted terms are guaranteed to be
repeat terms at the same indices as the original
seed.

Therefore, the encrypted seed resulting from
BSPO Lite reveals some information about the
original seed. Assuming an attacker was in
possession of the encrypted seed and knew the
seed had been encrypted using BSPO Lite, how
much information about the original seed would
be revealed?

Consider the following cases applied to a 24
word BIP39 seed phrase (N=2048 and r=24):

The original seed has 0 repeat terms

o The information revealed is simply that the
original seed also must not have any
repeating terms. The number of possible term
combinations (i.e. the space the attacker must
search) is thus equal to the number of existing

permutations without replacement.

r—1
P =T = kl;lo N -k (4)

Consider that the original seed has an output
space equal to the number of existing
permutations with replacement.

-
P,=N 5)
Note that P,>P,. however P s still very

secure. Specifically, for a 24 word seed
phrase, Po ~ 2.964e + 79 whereas

PE0 ~ 2.589e + 79. Hardly a meaningful

reduction in the possible output space.

2. The original seed has 1 set of repeat terms (2

repeat terms).

o In this case, the BSPO Lite encrypted seed
not only reveals that there exists a set of
repeating terms in the original seed, but the
indices of where that repeating set occurs.
Once again, the output space an attacker
must target must be calculated. The attacker
knows that there is a set of repeating terms,
and that no other terms repeat. The attacker
also knows the location of the repeating
terms. In effect, the attacker can reduce the
encrypted seed into a seed of length N-1.
The output space can now be calculated as
the set of permutations without replacement
(ie equation) while substituting N for N-1.
The size of the resulting output space is

PE2 ~ 1.279e + 76 . For comparison,

following from equation 5, the size of the
output space of a 23 word seed phrase
wouldbe P =~ 1.447e + 76,and a 22

word seed phrase would be
P = 7.067e + 72.Thus, since even 12

word seed phrases are considered
cryptographically secure, revealing that a
set of repeat terms exists in the original


http://bipshuffle.com

seed phrase doesn’t meaningfully
deteriorate the cryptographic security.

3. The original seed has 3 repeat terms.

o Following the same logic above, as the
number of repeating terms increases, the
size of the search space the attacker must
target decreases. For 3 repeating terms,
following from equation 4 (replacing ),

PE3 ~ 6.311e + 72.

We find that for each repeating term, the
amount of output space size decrease is
approximately the same as reducing the
length of the seed phrase by one term. This
analysis can be applied for multiple pairs of
repeating terms.

We can estimate the probability of occurrence of
each scenario above (and all possible scenarios)
based on the generalized birthday problem. In
particular, we’re interested in calculating the
portion of randomly generated seed phrases with
n unique terms, for n € [1, 24]. Because no
closed form solution for this problem is known,
the results of Monte Carlo Simulation (107 trials)
are provided in Figures 4 and 5 below.

Probability of n Unique Seed Term Occurence
10™7 Trials

0.8 1

=
(=

Probability

=
o=

0.2 1

0.0 T T T f
19 20 21 2 3 24
Mumber of Unique Seed Terms (out of 24)

Figure 4

Frequency of n Unigue Seed Term Occurence (Log Scale)
107 4

10° 4

107 o

10* §

10° 4

Counts (Log)

107 4

101 -

10° 4

20 21 2 23 24
Number of Unique Seed Terms (out of 24}

Figure 5

Notice that the probability of each additional
non-unique term decreases dramatically. In 10’
trials, only a single instance of 19 unique (5
colliding terms) occurred. In the worst case
(highly improbable), all 5 colliding terms were
the same, in which case the BSPO Lite encrypted
seed still retains the equivalent security of an
approximately 19 word seed phrase. Far more
likely, this instance of 19 unique terms represents
a collision of a set of 2 terms and another set of 3
terms, thus providing the approximate equivalent
security of a 21 word seed phrase. In any case,
it’s clear that for the vast majority of 24 word
seed phrases, BSPO Lite represents a safe way to
conveniently encrypt a seed. However, for users
with a 12 word seed phrase, we continue to
recommend leveraging BSPO Full due to the
decreased tolerance for reduced cryptographic
security. For users with a 24 word seed with more
than 11 non-unique terms (statistically highly
improbable), it is recommended to leverage
BSPO Full.



References

M. Palatinus, P. Rusnak, Aaron Voisine, and Sean Bowe, “Mnemonic code for generating
deterministic keys,” GitHub, 25-Jul-2022. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki. [Accessed: 04-Oct-2022].

P. Wuille, “Hierarchical Deterministic Wallets,” GitHub, 03-Jan-2022. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki. [Accessed: 04-Oct-2022].

D. Brink, “A (probably) exact solution to the birthday problem,” The Ramanujan Journal, vol.
28, no. 2, pp. 223-238, 2012.

Cane Island, There Will Never Be More Than 14 Million Bitcoins, 16-Apr-2020. [Online].
Available:
https://staticl.squarespace.com/static/5d580747908cdc0001e6792d/t/5¢98dde5558a587a09facOcc
/1587076583519/research+note+4.17.pdf. [Accessed: 04-Oct-2022].

D. Streit, “EIP-3450: Standardized shamir secret sharing scheme for BIP-39 mnemonics,”
Ethereum Improvement Proposals, 29-Mar-2021. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-3450. [Accessed: 04-Oct-2022].

Trezor, “Passphrase,” Trezor Wiki, 2022. [Online]. Available: https://wiki.trezor.io/Passphrase.
[Accessed: 04-Oct-2022].

10



